205 research outputs found

    AutoDiscern: Rating the Quality of Online Health Information with Hierarchical Encoder Attention-based Neural Networks

    Get PDF
    Patients increasingly turn to search engines and online content before, or in place of, talking with a health professional. Low quality health information, which is common on the internet, presents risks to the patient in the form of misinformation and a possibly poorer relationship with their physician. To address this, the DISCERN criteria (developed at University of Oxford) are used to evaluate the quality of online health information. However, patients are unlikely to take the time to apply these criteria to the health websites they visit. We built an automated implementation of the DISCERN instrument (Brief version) using machine learning models. We compared the performance of a traditional model (Random Forest) with that of a hierarchical encoder attention-based neural network (HEA) model using two language embeddings, BERT and BioBERT. The HEA BERT and BioBERT models achieved average F1-macro scores across all criteria of 0.75 and 0.74, respectively, outperforming the Random Forest model (average F1-macro = 0.69). Overall, the neural network based models achieved 81% and 86% average accuracy at 100% and 80% coverage, respectively, compared to 94% manual rating accuracy. The attention mechanism implemented in the HEA architectures not only provided 'model explainability' by identifying reasonable supporting sentences for the documents fulfilling the Brief DISCERN criteria, but also boosted F1 performance by 0.05 compared to the same architecture without an attention mechanism. Our research suggests that it is feasible to automate online health information quality assessment, which is an important step towards empowering patients to become informed partners in the healthcare process

    Neural networks versus Logistic regression for 30 days all-cause readmission prediction

    Full text link
    Heart failure (HF) is one of the leading causes of hospital admissions in the US. Readmission within 30 days after a HF hospitalization is both a recognized indicator for disease progression and a source of considerable financial burden to the healthcare system. Consequently, the identification of patients at risk for readmission is a key step in improving disease management and patient outcome. In this work, we used a large administrative claims dataset to (1)explore the systematic application of neural network-based models versus logistic regression for predicting 30 days all-cause readmission after discharge from a HF admission, and (2)to examine the additive value of patients' hospitalization timelines on prediction performance. Based on data from 272,778 (49% female) patients with a mean (SD) age of 73 years (14) and 343,328 HF admissions (67% of total admissions), we trained and tested our predictive readmission models following a stratified 5-fold cross-validation scheme. Among the deep learning approaches, a recurrent neural network (RNN) combined with conditional random fields (CRF) model (RNNCRF) achieved the best performance in readmission prediction with 0.642 AUC (95% CI, 0.640-0.645). Other models, such as those based on RNN, convolutional neural networks and CRF alone had lower performance, with a non-timeline based model (MLP) performing worst. A competitive model based on logistic regression with LASSO achieved a performance of 0.643 AUC (95%CI, 0.640-0.646). We conclude that data from patient timelines improve 30 day readmission prediction for neural network-based models, that a logistic regression with LASSO has equal performance to the best neural network model and that the use of administrative data result in competitive performance compared to published approaches based on richer clinical datasets

    Term Mapping Using Matrix Operations

    Get PDF
    We believe that gene name identification is a modular process involving term recognition, classification and mapping. This work\u27s focus is on gene name mapping, and we assume that names are already recognized and classified. We use a combination of two methods to map recognized entities to their appropriate gene identifiers (Entrez GeneIDs): the Trigram Method, and the Network Method. Both methods require preprocessing, using resources from Entrez Gene, to construct a set of method-specific matrices. We first address lexical variation by transforming gene names into their unique "trigrams" (groups of three alphanumeric characters), and perform trigram matching against the preprocessed gene dictionary. For ambiguous gene names, we additionally perform a contextual analysis of the abstract that contains the recognized entity. We have formalized our method as a sequence of matrix manipulations, allowing for a fast and coherent implementation of the algorithm. In this talk, we also show how gene name identification, and text mining in general, can play a critical role in translational medicine. We demonstrate how term identification is useful for establishing a biobibliometric distance between genes and psychiatric disorders

    Mining Images in Biomedical Publications: Detection and Analysis of Gel Diagrams

    Get PDF
    Authors of biomedical publications use gel images to report experimental results such as protein-protein interactions or protein expressions under different conditions. Gel images offer a concise way to communicate such findings, not all of which need to be explicitly discussed in the article text. This fact together with the abundance of gel images and their shared common patterns makes them prime candidates for automated image mining and parsing. We introduce an approach for the detection of gel images, and present a workflow to analyze them. We are able to detect gel segments and panels at high accuracy, and present preliminary results for the identification of gene names in these images. While we cannot provide a complete solution at this point, we present evidence that this kind of image mining is feasible.Comment: arXiv admin note: substantial text overlap with arXiv:1209.148

    Analyzing Patient Trajectories With Artificial Intelligence

    Full text link
    In digital medicine, patient data typically record health events over time (eg, through electronic health records, wearables, or other sensing technologies) and thus form unique patient trajectories. Patient trajectories are highly predictive of the future course of diseases and therefore facilitate effective care. However, digital medicine often uses only limited patient data, consisting of health events from only a single or small number of time points while ignoring additional information encoded in patient trajectories. To analyze such rich longitudinal data, new artificial intelligence (AI) solutions are needed. In this paper, we provide an overview of the recent efforts to develop trajectory-aware AI solutions and provide suggestions for future directions. Specifically, we examine the implications for developing disease models from patient trajectories along the typical workflow in AI: problem definition, data processing, modeling, evaluation, and interpretation. We conclude with a discussion of how such AI solutions will allow the field to build robust models for personalized risk scoring, subtyping, and disease pathway discovery

    Attention-based Multi-task Learning for Base Editor Outcome Prediction

    Full text link
    Human genetic diseases often arise from point mutations, emphasizing the critical need for precise genome editing techniques. Among these, base editing stands out as it allows targeted alterations at the single nucleotide level. However, its clinical application is hindered by low editing efficiency and unintended mutations, necessitating extensive trial-and-error experimentation in the laboratory. To speed up this process, we present an attention-based two-stage machine learning model that learns to predict the likelihood of all possible editing outcomes for a given genomic target sequence. We further propose a multi-task learning schema to jointly learn multiple base editors (i.e. variants) at once. Our model's predictions consistently demonstrated a strong correlation with the actual experimental results on multiple datasets and base editor variants. These results provide further validation for the models' capacity to enhance and accelerate the process of refining base editing designs

    Attention-based Multi-task Learning for Base Editor Outcome Prediction

    Full text link
    Human genetic diseases often arise from point mutations, emphasizing the critical need for precise genome editing techniques. Among these, base editing stands out as it allows targeted alterations at the single nucleotide level. However, its clinical application is hindered by low editing efficiency and unintended mutations, necessitating extensive trial-and-error experimentation in the laboratory. To speed up this process, we present an attention-based two-stage machine learning model that learns to predict the likelihood of all possible editing outcomes for a given genomic target sequence. We further propose a multi-task learning schema to jointly learn multiple base editors (i.e. variants) at once. Our model's predictions consistently demonstrated a strong correlation with the actual experimental results on multiple datasets and base editor variants. These results provide further validation for the models' capacity to enhance and accelerate the process of refining base editing designs.Comment: Extended Abstract presented at Machine Learning for Health (ML4H) symposium 2023, December 10th, 2023, New Orleans, United States, 15 pages. arXiv admin note: substantial text overlap with arXiv:2310.0291

    Accessing and browsing 3D anatomical images with a navigational ontology.

    Get PDF
    The problem that our research addresses is the lack of a comprehensive, universally useful system for navigating 3D images ofanatomical structures. In this paper we discuss the organization of anatomical information in a navigational ontology, a knowledge representation formalism that supports intelligent browsing of 3D anatomical images. For the purposes ofthis project, 'intelligent' means that the computer system behaves as if it had accurate knowledge of human anatomy consistent with that of a trained anatomist (though not necessarily as complete). To give a simple example, if the user asks to see the component structures of the urinary system, the system will return to the user either a list of structures and/or a model of them, just as an anatomy instructor might do. The Vesalius Anatomy Browser provides an interface for navigating 3D anatomical images in which anatomical images are linked to a hierarchical representation of conceptual information that corresponds directly to the images displayed on the screen. The association of the concepts with images makes possible simultaneous visual exploration of anatomical information via word and image

    Publishing without Publishers: a Decentralized Approach to Dissemination, Retrieval, and Archiving of Data

    Get PDF
    Making available and archiving scientific results is for the most part still considered the task of classical publishing companies, despite the fact that classical forms of publishing centered around printed narrative articles no longer seem well-suited in the digital age. In particular, there exist currently no efficient, reliable, and agreed-upon methods for publishing scientific datasets, which have become increasingly important for science. Here we propose to design scientific data publishing as a Web-based bottom-up process, without top-down control of central authorities such as publishing companies. Based on a novel combination of existing concepts and technologies, we present a server network to decentrally store and archive data in the form of nanopublications, an RDF-based format to represent scientific data. We show how this approach allows researchers to publish, retrieve, verify, and recombine datasets of nanopublications in a reliable and trustworthy manner, and we argue that this architecture could be used for the Semantic Web in general. Evaluation of the current small network shows that this system is efficient and reliable.Comment: In Proceedings of the 14th International Semantic Web Conference (ISWC) 201
    • …
    corecore